| 
 | 
 | 
The Ackermann function is the simplest example of a well-defined Total Function which is
Computable but not Primitive Recursive, providing a
counterexample to the belief in the early 1900s that every Computable Function was also Primitive
Recursive (Dötzel 1991). It grows faster than an exponential function, or even a multiple
exponential function. The Ackermann function 
 is defined by
![]()  | 
(1) | 
| (2) | |||
| (3) | |||
| (4) | |||
| (5) | |||
![]()  | 
(6) | 
| (7) | 
| (8) | 
Buck (1963) defines a related function using the same fundamental Recurrence Relation (with arguments 
flipped from Buck's convention) 
| (9) | 
| (10) | |||
| (11) | |||
| (12) | |||
| (13) | 
| (14) | |||
| (15) | |||
| (16) | |||
| (17) | 
, a
truly huge number!
See also Ackermann Number, Computable Function, Goodstein Sequence, Power Tower, Primitive Recursive Function, TAK Function, Total Function
References
Buck, R. C.  ``Mathematical Induction and Recursive Definitions.''  Amer. Math. Monthly 70, 128-135, 1963.
 
Dötzel, G.  ``A Function to End All Functions.'' Algorithm: Recreational Programming 2.4, 16-17, 1991.
 
Kleene, S. C.  Introduction to Metamathematics.  New York: Elsevier, 1971.
 
Péter, R.  Rekursive Funktionen.  Budapest: Akad. Kiado, 1951.
 
Reingold, E. H. and Shen, X.  ``More Nearly Optimal Algorithms for Unbounded Searching, Part I: The Finite Case.''
  SIAM J. Comput. 20, 156-183, 1991.
 
Rose, H. E.  Subrecursion, Functions, and Hierarchies.  New York: Clarendon Press, 1988.
 
Sloane, N. J. A.  Sequence
A001695/M2352
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Smith, H. J.  ``Ackermann's Function.''  http://pweb.netcom.com/~hjsmith/Ackerman.html.
 
Spencer, J.  ``Large Numbers and Unprovable Theorems.''  Amer. Math. Monthly 90, 669-675, 1983.
 
Tarjan, R. E.  Data Structures and Network Algorithms.  Philadelphia PA: SIAM, 1983.
 
Vardi, I.  Computational Recreations in Mathematica.  Redwood City, CA: Addison-Wesley, pp. 11, 227, and 232, 1991.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein