| 
 | 
 | 
A Catenary of Revolution.  The catenoid and Plane are the only Surfaces
of Revolution which are also Minimal Surfaces. The catenoid can be given by
the parametric equations
| (1) | |||
| (2) | |||
| (3) | 
| (4) | |||
| (5) | |||
| (6) | 
| (7) | 
| (8) | |||
| (9) | 
| (10) | 
| (11) | 
The Helicoid can be continuously deformed into a catenoid with 
 by the transformation
| (12) | |||
| (13) | |||
| (14) | 
See also Catenary, Costa Minimal Surface, Helicoid, Minimal Surface, Surface of Revolution
References
do Carmo, M. P.  ``The Catenoid.''  §3.5A in 
  Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer).
  Braunschweig, Germany: Vieweg, p. 43, 1986.
 
Fischer, G. (Ed.).  Plate 90 in 
  Mathematische Modelle/Mathematical Models, Bildband/Photograph Volume.
  Braunschweig, Germany: Vieweg, p. 86, 1986.
 
Geometry Center.  ``The Catenoid.''
  http://www.geom.umn.edu/zoo/diffgeom/surfspace/catenoid/.
 
Gray, A.  ``The Catenoid.''  §18.4 Modern Differential Geometry of Curves and Surfaces.
  Boca Raton, FL: CRC Press, pp. 367-369, 1993.
 
Meusnier, J. B.  ``Mémoire sur la courbure des surfaces.''  Mém. des savans étrangers 10 (lu 1776), 477-510, 1785.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein