| 
 | 
 | 
The complex conjugate of a Complex Number 
 is defined to be 
.  The complex conjugate
is Distributive over addition, 
, since
![\begin{eqnarray*}
{[}(a_1+ib_1)+(a_2+ib_2)]^* &=& [(a_1+a_2)\!+\!i(b_1+b_2)]^*\...
...\
&=& (a_1-ib_1)+(a_2-ib_2)\\
&=& (a_1+ib_1)^*+(a_2+ib_2)^*,
\end{eqnarray*}](c2_760.gif)
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, p. 16, 1972.