| 
 | 
 | 
Two notations are used for the digamma function.  The 
 digamma function is defined by
| (1) | 
| (2) | 
| (3) | 
![]()  | 
(4) | ||
![]()  | 
|||
| (5) | |||
![]()  | 
(6) | ||
![]()  | 
(7) | ||
![]()  | 
(8) | 
The 
th Derivative of 
 is called the Polygamma Function and is denoted 
.  Since the
digamma function is the zeroth derivative of 
 (i.e., the function itself), it is also denoted 
.
The digamma function satisfies
| (9) | 
![]()  | 
(10) | 
![]()  | 
(11) | 
| (12) | 
| (13) | 
| (14) | 
Special values are
| (15) | |||
| (16) | 
At integral values,
![]()  | 
(17) | 
![]()  | 
(18) | 
![]()  | 
(19) | 
| (20) | |||
| (21) | |||
| (22) | |||
| (23) | |||
| (24) | |||
| (25) | 
See also Gamma Function, Harmonic Number, Hurwitz Zeta Function, Polygamma Function
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Psi (Digamma) Function.''  §6.3 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 258-259, 1972.
 
Arfken, G.  ``Digamma and Polygamma Functions.''  §10.2 in Mathematical Methods for Physicists, 3rd ed.
  Orlando, FL: Academic Press, pp. 549-555, 1985.
 
Knuth, D. E.  The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed.  Reading, MA: Addison-Wesley, p. 94, 1973.
 
Spanier, J. and Oldham, K. B.  ``The Digamma Function  
.''
  Ch. 44 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 423-434, 1987.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein