| 
 | 
 | 
A set of Positive Integers 
 satisfies the Diophantus property 
 of order 
 if, for all
, ..., 
 with 
,
| (1) | 
| (2) | 
| (3) | 
The quadruplet
| (4) | 
References
Aleksandriiskii, D.  Arifmetika i kniga o mnogougol'nyh chislakh.  Moscow: Nauka, 1974.
 
Brown, E.  ``Sets in Which  
Davenport, H. and Baker, A.  ``The Equations  
Dujella, A.  ``Generalization of a Problem of Diophantus.''  Acta Arithm. 65, 15-27, 1993.
 
Dujella, A.  ``Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers.''  Portugaliae Math. 52, 305-318, 1995.
 
Dujella, A.  ``Generalized Fibonacci Numbers and the Problem of Diophantus.''  Fib. Quart. 34, 164-175, 1996.
 
Hoggatt, V. E. Jr. and Bergum, G. E.  ``A Problem of Fermat and the Fibonacci Sequence.''  Fib. Quart. 15, 323-330, 1977.
 
Jones, B. W.  ``A Variation of a Problem of Davenport and Diophantus.''  Quart. J. Math. (Oxford) Ser. (2) 27, 349-353, 1976.
 
 is Always a Square.''  Math. Comput. 45, 613-620, 1985.
 and 
.''  Quart. J. Math. (Oxford) Ser. 2 20, 129-137, 1969.