| 
 | 
 | 
Series of the form
![]()  | 
(1) | 
![]()  | 
(2) | 
![]()  | 
(3) | 
| (4) | 
Let 
 or 
, where 
 are distinct Odd Primes.  Then there are three possible types of
primitive 
-series with Real Coefficients. The requirement of
Real Coefficients restricts the Character
to 
 for all 
 and 
.  The three type are then
| (5) | 
| (6) | 
| (7) | 
The first few primitive Negative 
-series are 
, 
, 
, 
, 
, 
, 
,
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
,
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
,
, 
, ... (Sloane's A003657), corresponding to the negated discriminants of imaginary quadratic fields.  The
first few primitive Positive 
-series are 
, 
, 
, 
, 
, 
, 
,
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
,
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
,
, 
, ... (Sloane's A046113).
The Kronecker Symbol is a Real Character modulo 
, and is
in fact essentially the only type of Real primitive Character
(Ayoub 1963).  Therefore,
![]()  | 
(8) | ||
![]()  | 
(9) | 
| (10) | |||
| (11) | 
| (12) | |||
| (13) | |||
| (14) | |||
| (15) | |||
![]()  | 
(16) | ||
![]()  | 
(17) | 
| (18) | 
![]()  | 
|||
![]()  | 
|||
![]()  | 
|||
![]()  | 
|||
![]()  | 
|||
![]()  | 
| (19) | 
See also Dirichlet Beta Function, Dirichlet Eta Function
References
Ayoub, R. G.  An Introduction to the Analytic Theory of Numbers.  Providence, RI: Amer. Math. Soc., 1963.
 
Borwein, J. M. and Borwein, P. B.  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.
   New York: Wiley, 1987.
 
Buell, D. A.  ``Small Class Numbers and Extreme Values of  
Ireland, K. and Rosen, M.  ``Dirichlet  
Sloane, N. J. A.  Sequences
A046113 and
A003657/M2332
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
 
Zucker, I. J. and Robertson, M. M. ``Some Properties of Dirichlet  
-Functions of Quadratic Fields.''  Math. Comput. 139, 786-796, 1977.
-Functions.''  Ch. 16 in A Classical Introduction to Modern Number Theory, 2nd ed.
  New York: Springer-Verlag, pp. 249-268, 1990.
 Weisstein, E. W.  ``Class Numbers.''  Mathematica notebook ClassNumbers.m.
-Series.''  J. Phys. A: Math. Gen. 9, 1207-1214, 1976.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein