| 
 | 
 | 
When the Modulus 
 has a singular value, the complete elliptic integrals may be
computed in analytic form in terms of Gamma Functions. Abel 
 (quoted in Whittaker and
Watson 1990, p. 525) proved that whenever
| (1) | 
A Modulus 
 such that
| (2) | 
The following table gives the values of 
 for small integral 
 in terms of
Gamma Functions.

where 
 is the Gamma Function and 
 is an algebraic number (Borwein and Borwein 1987, p. 298).
Borwein and Zucker (1992) give amazing expressions for singular values of complete elliptic integrals in terms 
of Central Beta Functions 
| (3) | 
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
 
 | 
|
 
 | 
|
 
 | 
|
| 
 | 
|
 
 | 
|
 
 | 
|
| 
 | 
|
 
 | 
|
 
 | 
| (4) | 
Using the Elliptic Alpha Function, the Elliptic Integrals of the Second Kind can also be found from
![]()  | 
(5) | ||
| (6) | 
| (7) | 
See also Central Beta Function, Elliptic Alpha Function, Elliptic Delta Function, Elliptic Integral of the First Kind, Elliptic Integral of the Second Kind, Elliptic Lambda Function, Gamma Function, Modulus (Elliptic Integral)
References
Abel, N. H.  ``Recherches sur les fonctions elliptiques.''  J. reine angew. Math. 3, 160-190, 1828.
  Reprinted in Abel, N. H.  Oeuvres Completes (Ed. L. Sylow and S. Lie).  New York: Johnson Reprint Corp., p. 377, 1988.
 
Borwein, J. M. and Borwein, P. B.  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.
  New York: Wiley, pp. 139 and 298, 1987.
 
Borwein, J. M. and Zucker, I. J.  ``Elliptic Integral Evaluation of the Gamma Function at Rational Values of Small
  Denominator.''  IMA J. Numerical Analysis 12, 519-526, 1992.
 
Bowman, F.  Introduction to Elliptic Functions, with Applications.  New York: Dover, pp. 75, 95, and 98, 1961.
 
Glasser, M. L. and Wood, V. E.  ``A Closed Form Evaluation of the Elliptic Integral.''  Math. Comput. 22, 535-536, 1971.
 
Selberg, A. and Chowla, S.  ``On Epstein's Zeta-Function.''  J. Reine. Angew. Math. 227, 86-110, 1967.
 
 
Whittaker, E. T. and Watson, G. N.  A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge 
University Press, pp. 524-528, 1990.
 
Wrigge, S.  ``An Elliptic Integral Identity.''  Math. Comput. 27, 837-840, 1973.
 
Zucker, I. J.  ``The Evaluation in Terms of  
 Weisstein, E. W.  ``Elliptic Singular Values.''  Mathematica notebook EllipticSingular.m.
-Functions of the Periods of Elliptic Curves Admitting Complex
  Multiplication.''  Math. Proc. Cambridge Phil. Soc. 82, 111-118, 1977.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein