| 
 | 
 | 
A self-intersecting Minimal Surface having zero Mean Curvature and nonconstant Gaussian Curvature.
Enneper's minimal surface can be generated using the Enneper-Weierstraß Parameterization with
| (1) | |||
| (2) | 
| (3) | |||
| (4) | |||
| (5) | 
| (6) | |||
| (7) | |||
| (8) | 
See also Enneper-Weierstraß Parameterization
References
Dickson, S.  ``Minimal Surfaces.''  Mathematica J. 1, 38-40, 1990.
 
do Carmo, M. P.  ``Enneper's Surface.''  §3.5C in
  Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer).
  Braunschweig, Germany: Vieweg, p. 43, 1986.
 
Enneper, A.  ``Analytisch-geometrische Untersuchungen.''  Z. Math. Phys. 9, 96-125, 1864.
 
Gray, A.  ``Examples of Minimal Surfaces.''  §30.2 in
  Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed.
  Boca Raton, FL: CRC Press, pp. 358 and 684-685, 1997.
 
Maeder, R.  The Mathematica Programmer.  San Diego, CA: Academic Press, pp. 150-151, 1994.
 
Nordstrand, T.  ``Enneper's Minimal Surface.'' 
http://www.uib.no/people/nfytn/enntxt.htm.
 
 
 
 Wolfram Research  ``Mathematica Version 2.0 Graphics Gallery.''
http://www.mathsource.com/cgi-bin/MathSource/Applications/Graphics/3D/0207-155.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein