| 
 | 
 | 
The Euler formula states
| (1) | 
| (2) | 
| (3) | 
The Euler formula can be demonstrated using a series expansion
![]()  | 
|||
![]()  | 
|||
| (4) | 
| (5) | 
| (6) | 
| (7) | 
| (8) | 
| (9) | 
See also de Moivre's Identity, Euler Polyhedral Formula
References
Castellanos, D.  ``The Ubiquitous Pi.  Part I.''  Math. Mag. 61, 67-98, 1988.
 
Conway, J. H. and Guy, R. K.  ``Euler's Wonderful Relation.''  The Book of Numbers.  New York: Springer-Verlag, 
  pp. 254-256, 1996.
 
Cotes, R.  Philosophical Transactions 29, 32, 1714.
 
Euler, L.  Miscellanea Berolinensia 7, 179, 1743.
 
Euler, L.  Introductio in Analysin Infinitorum, Vol. 1.  Lausanne, p. 104, 1748.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein