| 
 | 
 | 
The first Euler-Maclaurin integration formula is
| 
 | 
|
| 
 | 
|
| 
 | 
(1) | 
![]()  | 
(2) | 
| 
 | 
|
| 
 | 
(3) | 
The Euler-Maclaurin formula is implemented in Mathematica
 (Wolfram Research, Champaign, IL) as the function
NSum with option Method->Integrate.
The second Euler-Maclaurin integration formula is used when 
 is tabulated at 
 values 
, 
, ...,
:
| 
 | 
|
| 
 | 
See also Sum, Wynn's Epsilon Method
References
Abramowitz, M. and Stegun, C. A. (Eds.).
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 16 and 806, 1972.
 
Arfken, G.  ``Bernoulli Numbers, Euler-Maclaurin Formula.''  §5.9 in 
  Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 327-338,
  1985.
 
Borwein, J. M.; Borwein, P. B.; and Dilcher, K.  ``Pi, Euler Numbers, and Asymptotic Expansions.''
  Amer. Math. Monthly 96, 681-687, 1989.
 
Vardi, I.  ``The Euler-Maclaurin Formula.''  §8.3 in Computational Recreations in Mathematica.
  Reading, MA: Addison-Wesley, pp. 159-163, 1991.