| 
 | 
 | 
Defined in Whittaker and Watson (1990, p. 264) and also called the Barnes G-Function.
![]()  | 
(1) | 
| (2) | 
![]()  | 
(3) | 
The 
-function is the reciprocal of the Double Gamma Function.  It satisfies
| (4) | 
| (5) | 
| (6) | 
| (7) | 
| (8) | |||
| (9) | 
| (10) | 
An unrelated pair of functions are denoted 
 and 
 and are known as Ramanujan g- and G-Functions.
See also Euler-Mascheroni Constant, Glaisher-Kinkelin Constant, K-Function, Meijer's G-Function, Ramanujan g- and G-Functions, Superfactorial
References
Barnes, E. W.  ``The Theory of the  
Glaisher, J. W. L.  ``On a Numerical Continued Product.''  Messenger Math. 6, 71-76, 1877.
 
Glaisher, J. W. L.  ``On the Product 
 
Glaisher, J. W. L.  ``On Certain Numerical Products.''  Messenger Math. 23, 145-175, 1893.
 
Glaisher, J. W. L.  ``On the Constant which Occurs in the Formula for 
 
Kinkelin.  ``Über eine mit der Gammafunktion verwandte Transcendente und deren Anwendung auf die Integralrechnung.''
  J. Reine Angew. Math. 57, 122-158, 1860.
 
Sloane, N. J. A.  Sequence
A000178/M2049
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Voros, A.  ``Spectral Functions, Special Functions and the Selberg Zeta Function.''  Commun. Math. Phys. 110, 439-465, 1987.
 
Whittaker, E. T. and Watson, G. N.  A Course in Modern Analysis, 4th ed.  Cambridge, England:
  Cambridge University Press, 1990.
 
-Function.''  Quart. J. Pure Appl. Math. 31, 264-314, 1900.
.''  Messenger Math. 7, 43-47, 1878.
.''  Messenger Math. 24, 1-16, 1894.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein