| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let 
 be a random number from 
 written as a simple Continued Fraction
![]()  | 
(1) | 
![]()  | 
|||
![]()  | 
(2) | 
| (3) | 
| (4) | 
References
Babenko, K. I.  ``On a Problem of Gauss.''  Soviet Math. Dokl. 19, 136-140, 1978.
 
Daudé, H.; Flajolet, P.; and Vallée, B.  ``An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction.''
  Submitted.
 
Durner, A.  ``On a Theorem of Gauss-Kuzmin-Lévy.''  Arch. Math. 58, 251-256, 1992.
 
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/kuzmin/kuzmin.html
 
Flajolet, P. and Vallée, B.  ``On the Gauss-Kuzmin-Wirsing Constant.''  Unpublished memo.  1995.
  http://pauillac.inria.fr/algo/flajolet/Publications/gauss-kuzmin.ps.
 
Knuth, D. E.  The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed.
  Reading, MA: Addison-Wesley, 1981.
 
MacLeod, A. J.  ``High-Accuracy Numerical Values of the Gauss-Kuzmin Continued Fraction Problem.''  Computers
  Math.  Appl. 26, 37-44, 1993.
 
Wirsing, E.  ``On the Theorem of Gauss-Kuzmin-Lévy and a Frobenius-Type Theorem for Function Spaces.''  Acta
  Arith. 24, 507-528, 1974.