| 
 | 
 | 
Also called Soddy's Hexlet.  Consider three mutually tangent Spheres 
, 
, and 
.  Then
construct a chain of Spheres tangent to each of 
, 
, and 
 threading and interlocking with the
 ring.  Surprisingly, every chain closes into a ``necklace'' after six Spheres regardless of where
the first Sphere is placed.  This is a special case of Kollros' Theorem.  The centers of a Soddy hexlet always 
lie on an Ellipse (Ogilvy 1990, p. 63).
See also Coxeter's Loxodromic Sequence of Tangent Circles, Kollros' Theorem, Steiner Chain
References
Coxeter, H. S. M.  ``Interlocking Rings of Spheres.''  Scripta Math. 18, 113-121, 1952.
 
Gosset, T.  ``The Hexlet.''  Nature 139, 251-252, 1937.
 
Honsberger, R.  Mathematical Gems II.  Washington, DC: Math. Assoc. Amer., pp. 49-50, 1976.
 
Morley, F.  ``The Hexlet.''  Nature 139, 72-73, 1937.
 
Ogilvy, C. S.  Excursions in Geometry.  New York: Dover, pp. 60-72, 1990.
 
Soddy, F.  ``The Bowl of Integers and the Hexlet.''  Nature 139, 77-79, 1937.
 
Soddy, F.  ``The Hexlet.''  Nature 139, 154 and 252, 1937.