| 
 | 
 | 
 
 | 
The Roulette traced by a point 
 attached to a Circle of radius 
 rolling around the inside of a fixed 
Circle of radius 
.  The parametric equations for a hypotrochoid are
| (1) | |||
| (2) | 
| (3) | |||
![]()  | 
(4) | 
See also Epitrochoid, Hypocycloid, Spirograph
References
Lawrence, J. D.  A Catalog of Special Plane Curves.  New York: Dover, pp. 165-168, 1972.
 
Lee, X.  ``Hypotrochoid.''
http://www.best.com/~xah/SpecialPlaneCurves_dir/Hypotrochoid_dir/hypotrochoid.html
 
Lee, X.  ``Epitrochoid and Hypotrochoid Movie Gallery.''
http://www.best.com/~xah/SpecialPlaneCurves_dir/EpiHypoTMovieGallery_dir/epiHypoTMovieGallery.html
 
MacTutor History of Mathematics Archive.  ``Hypotrochoid.''
http://www-groups.dcs.st-and.ac.uk/~history/Curves/Hypotrochoid.html.