| 
 | 
 | 
The function 
, also denoted arccot(
), where 
 is the Cotangent and the superscript 
 denotes an
Inverse Function and not the multiplicative inverse.  The Maclaurin Series is given by
| (1) | 
| (2) | 
| (3) | 
The inverse cotangent satisfies
| (4) | 
| (5) | 
![]()  | 
(6) | ||
![]()  | 
(7) | ||
| (8) | 
| (9) | |||
![]()  | 
(10) | ||
![]()  | 
(11) | ||
![]()  | 
(12) | 
A number
| (13) | 
![]()  | 
(14) | 
| (15) | 
| (16) | |||
| (17) | 
| (18) | 
| (19) | 
| (20) | 
An interesting inverse cotangent identity attributed to Charles Dodgson (Lewis Carroll) by Lehmer (1938b; Bromwich 1965,
Castellanos 1988ab) is
| (21) | 
| (22) | 
Other inverse cotangent identities include
| (23) | 
| (24) | 
See also Cotangent, Inverse Tangent, Machin's Formula, Machin-Like Formulas, Tangent
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Inverse Circular Functions.''  §4.4 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 79-83, 1972.
 
Bennett, A. A.  ``The Four Term Diophantine Arccotangent Relation.''  Ann. Math. 27, 21-24, 1926.
 
Beyer, W. H.  CRC Standard Mathematical Tables, 28th ed.  Boca Raton, FL: CRC Press, pp. 142-143, 1987.
 
Bromwich, T. J. I. and MacRobert, T. M.  An Introduction to the Theory of Infinite Series, 3rd ed.  New York: Chelsea, 1991.
 
Castellanos, D.  ``The Ubiquitous Pi.  Part I.''  Math. Mag. 61, 67-98, 1988a.
 
Castellanos, D.  ``The Ubiquitous Pi.  Part II.''  Math. Mag. 61, 148-163, 1988b.
 
Lehmer, D. H.  ``A Cotangent Analogue of Continued Fractions.''  Duke Math. J. 4, 323-340, 1938a.
 
Lehmer, D. H.  ``On Arccotangent Relations for  
 
Wetherfield, M.  ``The Enhancement of Machin's Formula by Todd's Process.''  Math. Gaz., 333-344, July 1996.
 
.''  Amer. Math. Monthly 45, 657-664, 1938b.
 Weisstein, E. W.  ``Arccotangent Series.''  Mathematica notebook CotSeries.m.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein