| 
 | 
 | 
Let 
, 
, ..., 
 be a 
-Edge coloring of the Complete Graph 
, where
for each 
, 2, ..., t, 
 is the spanning Subgraph of 
 consisting of all Edges colored with the 
th color.  The irredundant Ramsey number 
 is the smallest Integer
 such that for any 
-Edge coloring of 
, the Complement Graph 
has an irredundant set of size 
 for at least one 
, ..., 
. Irredundant Ramsey numbers were introduced by
Brewster et al. (1989) and satisfy 
| Bounds | Reference | |
| 6 | Brewster et al. 1989 | |
| 8 | Brewster et al. 1989 | |
| 12 | Brewster et al. 1989 | |
| 15 | Brewster et al. 1990 | |
| 18 | Chen and Rousseau 1995, Cockayne et al. 1991 | |
| 13 | Cockayne et al. 1992 | |
| 13 | Cockayne and Mynhardt 1994 | 
References
Brewster, R. C.; Cockayne, E. J.; and Mynhardt, C. M.  ``Irredundant Ramsey Numbers for Graphs.''  J. Graph Theory
  13, 283-290, 1989.
 
Brewster, R. C.; Cockayne, E. J.; and Mynhardt, C. M.  ``The Irredundant Ramsey Number  
Chen, G. and Rousseau, C. C.  ``The Irredundant Ramsey Number  
Cockayne, E. J.; Exoo, G.; Hattingh, J. H.; and Mynhardt, C. M.  ``The Irredundant Ramsey Number  
Cockayne, E. J.; Hattingh, J. H.; and Mynhardt, C. M.  ``The Irredundant Ramsey Number  
Cockayne, E. J. and Mynhardt, C. M.  ``The Irredundant Ramsey Number  
Hattingh, J. H.  ``On Irredundant Ramsey Numbers for Graphs.''  J. Graph Th. 14, 437-441, 1990.
 
Mynhardt, C. M.  ``Irredundant Ramsey Numbers for Graphs: A Survey.''  Congres. Numer. 86, 65-79, 1992.
 
.''  Quaest. Math.
  13, 141-157, 1990.
.''  J. Graph. Th. 19, 263-270, 1995.
.''
  Util. Math. 41, 119-128, 1992.
.''  Util. Math.
  39, 145-160, 1991.
.''  J. Graph. Th. 18, 595-604, 1994.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein