| 
 | 
 | 
A Matrix 
 has an inverse Iff the Determinant 
.  For a 
 Matrix
| (1) | 
| (2) | 
![]()  | 
(3) | 
The inverse of a Product 
 of Matrices 
 and 
 can be expressed
in terms of 
 and 
.  Let
| (4) | 
| (5) | 
| (6) | 
| (7) | 
| (8) | 
| (9) | 
See also Matrix, Matrix Addition, Matrix Multiplication, Moore-Penrose Generalized Matrix Inverse, Strassen Formulas
References
Ben-Israel, A. and Greville, T. N. E.  Generalized Inverses: Theory and Applications.  New York: Wiley, 1977.
 
Nash, J. C.  Compact Numerical Methods for Computers: Linear Algebra
  and Function Minimisation, 2nd ed.  Bristol, England: Adam Hilger, pp. 24-26, 1990.
 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.  ``Is Matrix Inversion an  
 Process?''  §2.11 in
  Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Cambridge, England:
  Cambridge University Press, pp. 95-98, 1992.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein