The normal to a Plane specified by
  | 
(1) | 
 
is given by 
![\begin{displaymath}
{\bf N} = \nabla f = \left[{\matrix{a\cr b\cr c\cr}}\right].
\end{displaymath}](n_909.gif)  | 
(2) | 
 
The normal vector at a point 
 on a surface 
 is
![\begin{displaymath}
{\bf N} = \left[{\matrix{f_x(x_0,y_0)\cr f_y(x_0,y_0)\cr -1\cr}}\right].
\end{displaymath}](n_912.gif)  | 
(3) | 
 
In the Plane, the unit normal vector is defined by
  | 
(4) | 
 
where 
 is the unit Tangent Vector and 
 is the polar angle. Given a unit Tangent Vector
  | 
(5) | 
 
with 
, the normal is
  | 
(6) | 
 
For a function given parametrically by 
, the normal vector relative to the point 
 is
therefore given by
To actually place the vector normal to the curve, it must be displaced by 
.
In 3-D Space, the unit normal is 
  | 
(9) | 
 
where 
 is the Curvature.  Given a 3-D surface 
,
  | 
(10) | 
 
If the surface is defined parametrically in the form
define the Vectors
![\begin{displaymath}
{\bf a}\equiv\left[{\matrix{x_\phi\cr y_\phi\cr z_\phi\cr}}\right]
\end{displaymath}](n_927.gif)  | 
(14) | 
 
![\begin{displaymath}
{\bf b}\equiv\left[{\matrix{x_\psi\cr y_\psi\cr z_\psi\cr}}\right].
\end{displaymath}](n_928.gif)  | 
(15) | 
 
Then the unit normal vector is
  | 
(16) | 
 
Let 
 be the discriminant of the Metric Tensor.  Then
  | 
(17) | 
 
See also Binormal Vector, Curvature, Frenet Formulas, Tangent Vector
References
Gray, A.  ``Tangent and Normal Lines to Plane Curves.''  §5.5 in 
  Modern Differential Geometry of Curves and Surfaces.  Boca Raton, FL: CRC Press, pp. 85-90, 1993.
© 1996-9 Eric W. Weisstein 
1999-05-25