| 
 | 
 | 
The function
![]()  | 
(1) | 
![]()  | 
(2) | 
The polylogarithm satisfies the fundamental identities
| (3) | 
| (4) | 
| (5) | 
![]()  | 
(6) | 
The polylogarithm identities lead to remarkable expressions.  Ramanujan 
 gave the polylogarithm identities
| (7) | 
| (8) | 
| (9) | 
| (10) | 
| (11) | 
| (12) | 
| (13) | 
| (14) | 
| (15) | 
| (16) | 
 
 | 
|
| 
 | 
(17) | 
No general Algorithm is know for the integration of polylogarithms of functions.
See also Dilogarithm, Eulerian Number, Legendre's Chi-Function, Logarithmic Integral, Nielsen-Ramanujan Constants
References
Bailey, D.; Borwein, P.; and Plouffe, S.  ``On the Rapid Computation of Various Polylogarithmic Constants.''
  http://www.cecm.sfu.ca/~pborwein/PAPERS/P123.ps.
 
Berndt, B. C.  Ramanujan's Notebooks, Part IV.  New York: Springer-Verlag, pp. 323-326, 1994.
 
Lewin, L.  Polylogarithms and Associated Functions.  New York: North-Holland, 1981.
 
Lewin, L. (Ed.).  Structural Properties of Polylogarithms.  Providence, RI: Amer. Math. Soc., 1991.
 
Nielsen, N.  Der Euler'sche Dilogarithms.  Leipzig, Germany: Halle, 1909.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein