| 
 | 
 | 
Let 
 denote the number of Primes 
 which are congruent to 
 modulo 
.  Then one might
expect that
References
Bays, C. and Hudson, R. H.  ``The Mean Behavior of Primes in Arithmetic Progressions.''  J. Reine Angew. Math. 296, 80-99, 1977.
 
Bays, C. and Hudson, R. H.  ``On the Fluctuations of Littlewood for Primes of the Form  
Bays, C. and Hudson, R. H.  ``Numerical and Graphical Description of All Axis Crossing Regions for the Moduli 4 and 8
  which Occur Before  
Berndt, B. C.  Ramanujan's Notebooks, Part IV.  New York: Springer-Verlag, pp. 135-136, 1994.
 
Hudson, R. H.  ``A Common Principle Underlies Riemann's Formula, the Chebyshev Phenomenon, and Other Subtle Effects
  in Comparative Prime Number Theory.  I.''  J. Reine Angew. Math. 313, 133-150, 1980.
 
Shanks, D.  ``Quadratic Residues and the Distribution of Primes.''  Math. Comput. 13, 272-284, 1959.
 
.''  Math. Comput.
  32, 281-286, 1978.
.''  Internat. J. Math. Math. Sci. 2, 111-119, 1979.