| 
 | 
 | 
A simple circuit in the 
-Hypercube which has no chords (i.e., for which all snake edges are edges of the
Hypercube).  Klee (1970) asked for the maximum length 
 of a 
-snake.  Klee (1970) gave the bounds
| (1) | 
| (2) | 
| (3) | 
| (4) | 
See also Hypercube
References
Abbott, H. L. and Katchalski, M.  ``On the Snake in the Box Problem.''  J. Combin. Th. Ser. B 44, 12-24, 1988.
 
Danzer, L. and Klee, V.  ``Length of Snakes in Boxes.''  J. Combin. Th. 2, 258-265, 1967.
 
Douglas, R. J.  ``Some Results on the Maximum Length of Circuits of Spread  
Evdokimov, A. A.  ``Maximal Length of a Chain in a Unit  
Guy, R. K.  ``Unsolved Problems Come of Age.''  Amer. Math. Monthly 96, 903-909, 1989.
 
Kautz, W. H.  ``Unit-Distance Error-Checking Codes.''  IRE Trans. Elect. Comput. 7, 177-180, 1958.
 
Klee, V.  ``What is the Maximum Length of a  
Sloane, N. J. A.  Sequence
A000937/M0995
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Snevily, H. S.  ``The Snake-in-the-Box Problem: A New Upper Bound.''  Disc. Math. 133, 307-314, 1994.
 
 in the 
-Cube.''  J. Combin. Th.
  6, 323-339, 1969.
-Dimensional Cube.''  Mat. Zametki 6, 309-319, 1969.
-Dimensional Snake?''  Amer. Math. Monthly 77, 63-65, 1970.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein