| 
 | 
 | 
A Figurate Number of the form 
| (1) | 
| (2) | 
The only numbers which are simultaneously Square and pyramidal (the Cannonball Problem) are
 and 
, corresponding to 
 and 
 (Dickson 1952, p. 25; Ball and Coxeter 1987, p. 59;
Ogilvy 1988), as conjectured by Lucas (1875, 1876) and proved by Watson (1918).  The proof is far from elementary, and
is equivalent to solving the Diophantine Equation
| (3) | 
Numbers which are simultaneously Triangular and square pyramidal satisfy
the Diophantine Equation
| (4) | 
See also Tetrahedral Number
References
Ball, W. W. R. and Coxeter, H. S. M.  Mathematical Recreations and Essays, 13th ed.  New York: Dover, p. 59, 1987.
 
Beukers, F.  ``On Oranges and Integral Points on Certain Plane Cubic Curves.''  Nieuw Arch. Wisk. 6, 203-210, 1988.
 
Conway, J. H. and Guy, R. K.  The Book of Numbers.  New York: Springer-Verlag, pp. 47-50, 1996.
 
Dickson, L. E.  History of the Theory of Numbers, Vol. 2: Diophantine Analysis.  New York: Chelsea, 1952.
 
Guy, R. K.  ``Figurate Numbers.''  §D3 in 
  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 147-150, 1994.
 
Lucas, É.  Question 1180.  Nouvelles Ann. Math. Ser. 2 14, 336, 1875.
 
Lucas, É.  Solution de Question 1180.  Nouvelles Ann. Math. Ser. 2 15, 429-432, 1876.
 
Ogilvy, C. S. and Anderson, J. T.  Excursions in Number Theory.  New York: Dover, pp. 77 and 152, 1988.
 
Sloane, N. J. A.  Sequence
A000330/M3844
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Watson, G. N. ``The Problem of the Square Pyramid.''  Messenger. Math. 48, 1-22, 1918.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein