| 
 | 
 | 
The number of ways of partitioning a set of 
 elements into 
 nonempty Sets (i.e., 
 Blocks), also called a Stirling Set Number.  For example, the Set 
 can be partitioned into
three Subsets in one way: 
; into two Subsets in three ways:
, 
, and 
; and into one Subset in one way: 
.
The Stirling numbers of the second kind are denoted 
, 
, 
, or 
, so the Stirling numbers of the second kind for three elements are
| (1) | |||
| (2) | |||
| (3) | 
| (4) | 
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
|
| 
 | 
The Stirling numbers of the second kind can be computed from the sum
![]()  | 
(5) | 
![]()  | 
(6) | 
![]()  | 
(7) | 
![]()  | 
(8) | 
The following diagrams (Dickau) illustrate the definition of the Stirling numbers of the second kind
 for 
 and 4.
Stirling numbers of the second kind obey the Recurrence Relations
| (9) | 
An identity involving Stirling numbers of the second kind is
![]()  | 
(10) | 
See also Bell Number, Combination Lock, Lengyel's Constant, Minimal Cover, Stirling Number of the First Kind
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Stirling Numbers of the Second Kind.''  §24.1.4 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 824-825, 1972.
 
Comtet, L.  Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed.  Boston, MA: Reidel, 1974.
 
Conway, J. H. and Guy, R. K.  In The Book of Numbers.  New York: Springer-Verlag, pp. 91-92, 1996.
 
Dickau, R. M.  ``Stirling Numbers of the Second Kind.''
 
Graham, R. L.; Knuth, D. E.; and Patashnik, O.  Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
  Reading, MA: Addison-Wesley, 1994.
 
Knuth, D. E.  ``Two Notes on Notation.''  Amer. Math. Monthly 99, 403-422, 1992.
 
Riordan, J.  An Introduction to Combinatorial Analysis.  New York: Wiley, 1980.
 
Riordan, J.  Combinatorial Identities.  New York: Wiley, 1968.
 
Riskin, A.  ``Problem 10231.''  Amer. Math. Monthly 102, 175-176, 1995.
 
Sloane, N. J. A.  Sequence 
A008277
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
 
Stanley, R. P.  Enumerative Combinatorics, Vol. 1.  Cambridge, England: Cambridge University Press, 1997.
 
http://forum.swarthmore.edu/advanced/robertd/stirling2.html
| 
 | 
 | 
© 1996-9 Eric W. Weisstein