| 
 | 
 | 
A Størmer number is a Positive Integer 
 for which the largest Prime factor 
 of 
 is at least 
. 
Every Gregory Number 
 can be expressed uniquely as a sum of 
s where the 
s are Størmer numbers.  Conway
and Guy (1996) give a table of Størmer numbers reproduced below (Sloane's A005529).  In a paper on Inverse Tangent
relations, Todd (1949) gives a similar compilation.
| 1 | 2 | 10 | 101 | 19 | 181 | 26 | 677 | 35 | 613 | 
| 2 | 5 | 11 | 61 | 20 | 401 | 27 | 73 | 36 | 1297 | 
| 4 | 17 | 12 | 29 | 22 | 97 | 28 | 157 | 37 | 137 | 
| 5 | 13 | 14 | 197 | 23 | 53 | 29 | 421 | 39 | 761 | 
| 6 | 37 | 15 | 113 | 24 | 577 | 33 | 109 | 40 | 1601 | 
| 9 | 41 | 16 | 257 | 25 | 313 | 34 | 89 | 42 | 353 | 
See also Gregory Number, Inverse Tangent
References
Conway, J. H. and Guy, R. K.  ``Størmer's Numbers.''  The Book of Numbers.  New York: Springer-Verlag,
  pp. 245-248, 1996.
 
Sloane, N. J. A.  Sequence
A005529/M1505
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Todd, J.  ``A Problem on Arc Tangent Relations.''  Amer. Math. Monthly 56, 517-528, 1949.