| 
 | 
 | 
Togliatti (1940, 1949) showed that Quintic Surfaces having 31 Ordinary Double Points exist, although he did not explicitly derive equations for such surfaces. Beauville (1978) subsequently proved that 31 double points are the maximum possible, and quintic surfaces having 31 Ordinary Double Points are therefore sometimes called Togliatti surfaces. van Straten (1993) subsequently constructed a 3-D family of solutions and in 1994, Barth derived the example known as the Dervish.
See also Dervish, Ordinary Double Point, Quintic Surface
References
Beauville, A.  ``Surfaces algébriques complexes.''  Astérisque 54, 1-172, 1978.
 
Endraß, S.  ``Togliatti Surfaces.''
http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Etogliatti.shtml.
 
Hunt, B.  ``Algebraic Surfaces.''  http://www.mathematik.uni-kl.de/~wwwagag/Galerie.html.
 
Togliatti, E. G. ``Una notevole superficie de  
Togliatti, E.  ``Sulle superficie monoidi col massimo numero di punti doppi.''  Ann. Mat. Pura Appl. 30, 201-209, 1949.
 
van Straten, D.  ``A Quintic Hypersurface in  
 ordine con soli punti doppi isolati.''  Vierteljschr. Naturforsch. Ges. Zürich
   85, 127-132, 1940.
 with 
 Nodes.''  Topology 32, 857-864, 1993.