| 
 | 
 | 
Let 
, 
, ..., 
 be distinct primitive elements of a 2-D Lattice 
 such that 
for 
, ..., 
.  Each collection 
 then forms a set of rays of a unique
complete fan in 
, and therefore determines a 2-D toric variety 
.
References
Danilov, V. I.  ``The Geometry of Toric Varieties.''  Russ. Math. Surv. 33, 97-154, 1978.
 
Fulton, W.  Introduction to Toric Varieties.  Princeton, NJ: Princeton University Press, 1993.
 
Morelli, R.  ``Pick's Theorem and the Todd Class of a Toric Variety.''  Adv. Math. 100, 183-231, 1993.
 
Oda, T.  Convex Bodies and Algebraic Geometry.  New York: Springer-Verlag, 1987.
 
Pommersheim, J. E.  ``Toric Varieties, Lattice Points, and Dedekind Sums.'' Math. Ann. 295, 1-24, 1993.