| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let 
 be the smallest Tour length for 
 points in a 
-D Hypercube.  Then there exists a smallest
constant 
 such that for all optimal Tours in the Hypercube,
| (1) | 
| (2) | 
| 
 | 
|
| 
 | 
(3) | 
| 
 | 
|
| 
 | 
(4) | 
| 
 | 
|
| 
 | 
(5) | 
| (6) | 
| (7) | 
| (8) | 
| 
 | 
|
| 
 | 
(9) | 
| (10) | 
| (11) | 
Now consider the constant
| (12) | 
| (13) | 
A certain self-avoiding Space-Filling Curve is an optimal Tour through a set of 
 points, where 
 can be
arbitrarily large.  It has length
| (14) | 
References
Beardwood, J.; Halton, J. H.; and Hammersley, J. M.  ``The Shortest Path Through Many Points.''  
  Proc. Cambridge Phil. Soc. 55, 299-327, 1959.
 
Chartrand, G.  ``The Salesman's Problem: An Introduction to Hamiltonian Graphs.''  §3.2 in Introductory Graph Theory.
  New York: Dover, pp. 67-76, 1985.
 
Fejes Tóth, L.  ``Über einen geometrischen Satz.''  Math. Zeit. 46, 83-85, 1940.
 
Few, L.  ``The Shortest Path and the Shortest Road Through  
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/sales/sales.html
 
Flood, M.  ``The Travelling Salesman Problem.''  Operations Res. 4, 61-75, 1956.
 
Goddyn, L. A.  ``Quantizers and the Worst Case Euclidean Traveling Salesman Problem.''  J. Combin. Th. Ser. B 50, 65-81, 1990.
 
Kabatyanskii, G. A. and Levenshtein, V. I.  ``Bounds for Packing on a Sphere and in Space.''  Problems
  Inform. Transm. 14, 1-17, 1978.
 
Karloff, H. J.  ``How Long Can a Euclidean Traveling Salesman Tour Be?''  SIAM J. Disc. Math. 2, 91-99, 1989.
 
Moran, S.  ``On the Length of Optimal TSP Circuits in Sets of Bounded Diameter.''  J. Combin. Th. Ser. B 37, 113-141, 1984.
 
Moscato, P.  ``Fractal Instances of the Traveling Salesman Constant.''
  http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html
 
Steele, J. M. and Snyder, T. L.  ``Worst-Case Growth Rates of Some Classical Problems of Combinatorial
  Optimization.''  SIAM J. Comput. 18, 278-287, 1989.
 
Verblunsky, S. ``On the Shortest Path Through a Number of Points.''  Proc. Amer. Math. Soc. 2, 904-913, 1951.
 
 Points.''  Mathematika 2, 141-144, 1955.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein