| 
 | 
 | 
Although Bessel Functions of the Second Kind are sometimes called
Weber functions, Abramowitz and Stegun (1972) define a separate Weber function as
| (1) | 
Letting 
 be a Root of Unity, another set of Weber functions is defined as
![]()  | 
(2) | ||
| (3) | |||
![]()  | 
(4) | ||
![]()  | 
(5) | ||
![]()  | 
(6) | 
| (7) | |||
| (8) | |||
| (9) | |||
![]()  | 
(10) | ||
![]()  | 
(11) | ||
![]()  | 
(12) | 
See also Anger Function, Bessel Function of the Second Kind, Dedekind Eta Function, j-Function, Jacobi Identities, Jacobi Triple Product, Modified Struve Function, Q-Function, Struve Function
References
Abramowitz, M. and Stegun, C. A. (Eds.).  ``Anger and Weber Functions.''  §12.3 in
  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
  New York: Dover, pp. 498-499, 1972.
 
Atkin, A. O. L. and Morain, F.  ``Elliptic Curves and Primality Proving.''  Math. Comput. 61, 29-68, 1993.
 
Borwein, J. M. and Borwein, P. B.  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.
  New York: Wiley, pp. 68-69, 1987.
 
Weber, H.  Lehrbuch der Algebra, Vols. I-II.  New York: Chelsea, pp. 113-114, 1902.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein