| 
 | 
 | 
The parameters 
, 
, 
, and 
 which, like the three Euler Angles, provide
a way to uniquely characterize the orientation of a solid body.  These parameters satisfy the identities
| (1) | |||
| (2) | |||
| (3) | |||
| (4) | |||
| (5) | 
| (6) | |||
| (7) | 
| (8) | |||
| (9) | |||
| (10) | |||
| (11) | 
The transformation matrix is given in terms of the Cayley-Klein parameters by
![]()  | 
(12) | 
(Goldstein 1960, p. 153).
The Cayley-Klein parameters may be viewed as parameters of a matrix (denoted Q for its close relationship with
Quaternions)
| (13) | 
| (14) | |||
| (15) | 
| (16) | 
| (17) | 
| (18) | 
See also Euler Angles, Euler Parameters, Pauli Matrices, Quaternion
References
Goldstein, H.  ``The Cayley-Klein Parameters and Related Quantities.''  §4-5 in 
  Classical Mechanics, 2nd ed.  Reading, MA: Addison-Wesley, pp. 148-158, 1980.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein