| 
 | 
 | 
A problem posed by L. Collatz in 1937, also called the 3x+1 Mapping, Hasse's Algorithm, Kakutani's
Problem, Syracuse Algorithm, Syracuse Problem, Thwaites Conjecture, and Ulam's Problem
(Lagarias 1985).  Thwaites (1996) has offered a 
1000 reward for resolving the Conjecture.  Let 
 be an
Integer.  Then the Collatz problem asks if iterating
| (1) | 
The Collatz problem was modified by Terras (1976, 1979), who asked if iterating
| (2) | 
| (3) | 
| (4) | 
| (5) | |||
| (6) | |||
| (7) | 
Conway proved that the original Collatz problem has no nontrivial cycles of length 
.  Lagarias (1985) showed that
there are no nontrivial cycles with length 
. Conway (1972) also proved that Collatz-type problems can be
formally Undecidable.
A generalization of the Collatz Problem lets 
 be a Positive Integer and 
, ..., 
be Nonzero Integers.  Also let 
 satisfy
| (8) | 
| (9) | 
| (10) | 
| (11) | 
| # Cycles | Max. Cycle Length | |
| 0 | 5 | 27 | 
| 1 | 10 | 34 | 
| 2 | 13 | 118 | 
| 3 | 17 | 118 | 
| 4 | 19 | 118 | 
| 5 | 21 | 165 | 
| 6 | 23 | 433 | 
Matthews and Watts (1984) proposed the following conjectures.
| 
 | 
|
| 
 | 
(12) | 
![]()  | 
(13) | 
See also Hailstone Number
References
Applegate, D. and Lagarias, J. C.  ``Density Bounds for the  
Applegate, D. and Lagarias, J. C.  ``Density Bounds for the  
Beeler, M.; Gosper, R. W.; and Schroeppel, R.  HAKMEM.  Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.
 
Burckel, S.  ``Functional Equations Associated with Congruential Functions.''  Theor. Comp. Sci. 123, 397-406, 1994.
 
Conway, J. H.  ``Unpredictable Iterations.''  Proc. 1972 Number Th. Conf., University of Colorado, Boulder, Colorado, pp. 49-52, 1972.
 
Crandall, R.  ``On the ` 
Everett, C.  ``Iteration of the Number Theoretic Function  
Guy, R. K.  ``Collatz's Sequence.''  §E16 in Unsolved Problems in Number Theory, 2nd ed.
  New York: Springer-Verlag, pp. 215-218, 1994.
 
Lagarias, J. C.  ``The  
Leavens, G. T. and Vermeulen, M.  `` 
Matthews, K. R.  ``The Generalized  
Matthews, K. R.  ``A Generalized  
Matthews, K. R. and Watts, A. M.  ``A Generalization of Hasses's Generalization of the Syracuse Algorithm.''
  Acta Arith. 43, 167-175, 1984.
 
Sloane, N. J. A.  Sequence
A006667/M0019
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.
 
Terras, R.  ``A Stopping Time Problem on the Positive Integers.''  Acta Arith. 30, 241-252, 1976.
 
Terras, R.  ``On the Existence of a Density.''  Acta Arith. 35, 101-102, 1979.
 
Thwaites, B.  ``Two Conjectures, or How to win  
Vardi, I.  ``The  
 Problem 1. Tree-Search Method.''
  Math. Comput. 64, 411-426, 1995.
 Problem 2. Krasikov Inequalities.''
  Math. Comput. 64, 427-438, 1995.
' Problem.''  Math. Comput. 32, 1281-1292, 1978.
, 
.''  Adv. Math. 25, 42-45, 1977.
 Problem and Its Generalizations.''  Amer. Math. Monthly 92, 3-23, 1985. 
  http://www.cecm.sfu.ca/organics/papers/lagarias/.
 Search Programs.''  Comput. Math. Appl. 24, 79-99, 1992.
 Mapping.''
  http://www.maths.uq.oz.au/~krm/survey.ps.  Rev. Mar. 30, 1999.
 Conjecture.''  [$100 Reward for a Proof.]
  ftp://www.maths.uq.edu.au/pub/krm/gnubc/challenge.
1100.''  Math.Gaz. 80, 35-36, 1996.
 Problem.''  Ch. 7 in Computational Recreations in Mathematica.
  Redwood City, CA: Addison-Wesley, pp. 129-137, 1991.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein