Consider the family of Ellipses
  | 
(1) | 
 
for 
.  The Partial Derivative with respect to 
 is
  | 
(2) | 
 
  | 
(3) | 
 
Combining (1) and (3) gives the set of equations
![\begin{displaymath}
\left[{\matrix{{1\over c^2} & {1\over(1-c)^2}\cr
{1\over c^3...
...rix{x^2\cr y^2\cr}}\right] = \left[{\matrix{1\cr 0\cr}}\right]
\end{displaymath}](e_614.gif)  | 
(4) | 
 
where the Discriminant is
  | 
(6) | 
 
so (5) becomes
![\begin{displaymath}
\left[{\matrix{x^2\cr y^2\cr}}\right]=\left[{\matrix{c^3\cr (1-c)^3\cr}}\right].
\end{displaymath}](e_619.gif)  | 
(7) | 
 
Eliminating 
 then gives
  | 
(8) | 
 
which is the equation of the Astroid.
If the curve is instead represented parametrically, then
Solving
 
 | 
 | 
 
 | 
(11) | 
for 
 gives
  | 
(12) | 
 
so substituting this back into (9) and (10) gives
the parametric equations of the Astroid.
See also Astroid, Ellipse, Envelope
© 1996-9 Eric W. Weisstein 
1999-05-25