| 
 | 
 | 
Elliptic alpha functions relate the complete Elliptic Integrals of the First 
 and
Second Kinds 
 at Elliptic Integral Singular Values 
 according to
![]()  | 
(1) | ||
![]()  | 
(2) | ||
![]()  | 
(3) | 
| (4) | |||
| (5) | 
| (6) | 
| (7) | 
| (8) | 
![\begin{eqnarray*}
\alpha(1)&=&{\textstyle{1\over 2}}\\
\alpha(2)&=&\sqrt{2}-1...
...]\\
\alpha(27)&=&3[{\textstyle{1\over 2}}(\sqrt{3}+1)-2^{1/3}]
\end{eqnarray*}](e_726.gif)
![\begin{eqnarray*}
\alpha(30)&=&{\textstyle{1\over 2}}\{\sqrt{30} - (2 + \sqrt{5...
...(\sqrt{8}-1)-(2^{1/4}-1)^4]\over (\sqrt{\sqrt{2}+1}+2^{5/8})^4}.
\end{eqnarray*}](e_727.gif)
J. Borwein has written an Algorithm which uses lattice basis reduction to provide algebraic values for 
.
See also Elliptic Integral of the First Kind, Elliptic Integral of the Second Kind, Elliptic Integral Singular Value, Elliptic Lambda Function
References
Borwein, J. M. and Borwein, P. B.  Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.
  New York: Wiley, 1987.
 
Borwein, J. M.; Borwein, P. B.; and  Bailey, D. H.  ``Ramanujan, Modular Equations, and Approximations
  to Pi, or How to Compute One Billion Digits of Pi.''  Amer. Math. Monthly 96, 201-219, 1989.
 
 
 Weisstein, E. W.  ``Elliptic Singular Values.''  Mathematica notebook EllipticSingular.m.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein