| 
 | 
 | 
An object or quantity which displays Self-Similarity, in a somewhat technical sense, on all scales. The object need not exhibit exactly the same structure at all scales, but the same ``type'' of structures must appear on all scales. A plot of the quantity on a log-log graph versus scale then gives a straight line, whose slope is said to be the Fractal Dimension. The prototypical example for a fractal is the length of a coastline measured with different length Rulers. The shorter the Ruler, the longer the length measured, a Paradox known as the Coastline Paradox.
See also Backtracking, Barnsley's Fern, Box Fractal, Butterfly Fractal, Cactus Fractal, Cantor Set, Cantor Square Fractal, Carotid-Kundalini Fractal, Cesàro Fractal, Chaos Game, Circles-and-Squares Fractal, Coastline Paradox, Dragon Curve, Fat Fractal, Fatou Set, Flowsnake Fractal, Fractal Dimension, H-Fractal, Hénon Map, Iterated Function System, Julia Fractal, Kaplan-Yorke Map, Koch Antisnowflake, Koch Snowflake, Lévy Fractal, Lévy Tapestry, Lindenmayer System, Mandelbrot Set, Mandelbrot Tree, Menger Sponge, Minkowski Sausage, Mira Fractal, Newton's Method, Pentaflake, Pythagoras Tree, Rabinovich-Fabrikant Equation, San Marco Fractal, Sierpinski Carpet, Sierpinski Curve, Sierpinski Sieve, Star Fractal, Zaslavskii Map
References
 
Barnsley, M. F. and Rising, H.  Fractals Everywhere, 2nd ed.  Boston, MA: Academic Press, 1993.
 
Bogomolny, A.  ``Fractal Curves and Dimension.''  
http://www.cut-the-knot.com/do_you_know/dimension.html.
 
Brandt, C.; Graf, S.; and Zähle, M. (Eds.).  Fractal Geometry and Stochastics.  Boston, MA: Birkhäuser, 1995.
 
Bunde, A. and Havlin, S. (Eds.).  Fractals and Disordered Systems, 2nd ed.  New York: Springer-Verlag, 1996.
 
Bunde, A. and Havlin, S. (Eds.).  Fractals in Science.  New York: Springer-Verlag, 1994.
 
Devaney, R. L.  Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia Sets.
  Providence, RI: Amer. Math. Soc., 1994.
 
Devaney, R. L. and Keen, L.  Chaos and Fractals: The Mathematics Behind the Computer Graphics.
  Providence, RI: Amer. Math. Soc., 1989.
 
Edgar, G. A.  Classics on Fractals.  Reading, MA: Addison-Wesley, 1994.
 
Eppstein, D. ``Fractals.''
http://www.ics.uci.edu/~eppstein/junkyard/fractal.html.
 
Falconer, K. J.  The Geometry of Fractal Sets, 1st pbk. ed., with corr.
  Cambridge, England Cambridge University Press, 1986.
 
Feder, J.  Fractals.  New York: Plenum Press, 1988.
 
Giffin, N.  ``The Spanky Fractal Database.''  http://spanky.triumf.ca/www/welcome1.html.
 
Hastings, H. M. and Sugihara, G.  Fractals: A User's Guide for the Natural Sciences.
  New York: Oxford University Press, 1994.
 
Kaye, B. H.  A Random Walk Through Fractal Dimensions, 2nd ed.  New York: Wiley, 1994.
 
Lauwerier, H. A.  Fractals: Endlessly Repeated Geometrical Figures.
  Princeton, NJ: Princeton University Press, 1991.
 
Mandelbrot, B. B.  Fractals: Form, Chance, & Dimension.  San Francisco, CA: W. H. Freeman, 1977.
 
Mandelbrot, B. B.  The Fractal Geometry of Nature.  New York: W. H. Freeman, 1983.
 
Massopust, P. R.  Fractal Functions, Fractal Surfaces, and Wavelets.  San Diego, CA: Academic Press, 1994.
 
Pappas, T.  ``Fractals--Real or Imaginary.''  The Joy of Mathematics.
  San Carlos, CA: Wide World Publ./Tetra, pp. 78-79, 1989.
 
Peitgen, H.-O.; Jürgens, H.; and Saupe, D.  Chaos and Fractals: New Frontiers of Science.
  New York: Springer-Verlag, 1992.
 
Peitgen, H.-O. and Richter, D. H.  The Beauty of Fractals: Images of Complex Dynamical Systems.
  New York: Springer-Verlag, 1986.
 
Peitgen, H.-O. and Saupe, D. (Eds.).  The Science of Fractal Images.  New York: Springer-Verlag, 1988.
 
Pickover, C. A. (Ed.).  The Pattern Book: Fractals, Art, and Nature.  World Scientific, 1995. 
 
Pickover, C. A. (Ed.).  Fractal Horizons: The Future Use of Fractals.  New York: St. Martin's Press, 1996.
 
Rietman, E.
  Exploring the Geometry of Nature: Computer Modeling of Chaos, Fractals, Cellular Automata, and Neural Networks.
  New York: McGraw-Hill, 1989.
 
Russ, J. C.  Fractal Surfaces.  New York: Plenum, 1994.
 
Schroeder, M.  Fractals, Chaos, Power Law: Minutes from an Infinite Paradise.
  New York: W. H. Freeman, 1991.
 
Sprott, J. C.  ``Sprott's Fractal Gallery.''  http://sprott.physics.wisc.edu/fractals.htm.
 
Stauffer, D. and Stanley, H. E.  From Newton to Mandelbrot, 2nd ed.  New York: Springer-Verlag, 1995.
 
Stevens, R. T.  Fractal Programming in C.  New York: Henry Holt, 1989.
 
Takayasu, H.  Fractals in the Physical Sciences.  Manchester, England: Manchester University Press, 1990.
 
Tricot, C.  Curves and Fractal Dimension.  New York: Springer-Verlag, 1995.
 
Triumf Mac Fractal Programs.
  http://spanky.triumf.ca/pub/fractals/programs/MAC/.
 
Vicsek, T.  Fractal Growth Phenomena, 2nd ed.  Singapore: World Scientific, 1992.
 
 
Yamaguti, M.; Hata, M.; and Kigami, J.  Mathematics of Fractals.  Providence, RI: Amer. Math. Soc., 1997.
 
 Fractals
 Weisstein, E. W.  ``Fractals.''  Mathematica notebook Fractal.m.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein