| 
 | 
 | 
Let 
 be a rational function
| (1) | 
For a Julia set 
 with 
, the Capacity Dimension is
| (2) | 
Quadratic Julia sets are generated by the quadratic mapping
| (3) | 
See also Dendrite Fractal, Douady's Rabbit Fractal, Fatou Set, Mandelbrot Set, Newton's Method, San Marco Fractal, Siegel Disk Fractal
References
Dickau, R. M.  ``Julia Sets.''
http://forum.swarthmore.edu/advanced/robertd/julias.html.
 
Dickau, R. M.  ``Another Method for Calculating Julia Sets.''
http://forum.swarthmore.edu/advanced/robertd/inversejulia.html.
 
Douady, A.  ``Julia Sets and the Mandelbrot Set.''  In The Beauty of Fractals: Images of Complex Dynamical Systems
  (Ed. H.-O. Peitgen and D. H. Richter).  Berlin: Springer-Verlag, p. 161, 1986.
 
Lauwerier, H.  Fractals: Endlessly Repeated Geometric Figures.  Princeton, NJ: Princeton University Press,
  pp. 124-126, 138-148, and 177-179, 1991.
 
Peitgen, H.-O. and Saupe, D. (Eds.).  ``The Julia Set,'' ``Julia Sets as Basin Boundaries,'' ``Other Julia Sets,'' and
  ``Exploring Julia Sets.''  §3.3.2 to 3.3.5 in The Science of Fractal Images.
  New York: Springer-Verlag, pp. 152-163, 1988.
 
Schroeder, M.  Fractals, Chaos, Power Laws.  New York: W. H. Freeman, p. 39, 1991.
 
Wagon, S.  ``Julia Sets.''  §5.4 in Mathematica in Action.  New York: W. H. Freeman, pp. 163-178, 1991.
 
| 
 | 
 | 
© 1996-9 Eric W. Weisstein